Code No: R10102/R10

I B.Tech I Semester Supplementary Examinations, Feb/Mar 2014 MATHEMATICS-I

 (Common to Civil Engineering, Electrical & Electronics Engineering, Mechanical Engineering, Electronics & Communication Engineering, Computer Science & Engineering, Chemical Engineering, Electronics & Instrumentation Engineering, Bio-Medical Engineering, Information Technology, Electronics & Computer Engineering, Aeronautical Engineering, Bio-Technology, Automobile Engineering, Mining and Petroliem Technology)

Time: 3 hours

Max Marks: 75

Answer any FIVE Questions All Questions carry equal marks *****

- 1. (a) Solve $(x^2 + y^2 a^2)x \, dx + (x^2 y^2 b^2)y \, dy = 0.$ [7+8]
 - (b) If air is maintained at $20^{\circ} C$ and the temperature of the body cools from $80^{\circ} C$ to $60^{\circ} C$ in 10 minutes, find the temperature of the body after 30 minutes.

2. (a) Solve
$$(D^2 + a^2)y = Sec ax$$

(b) Solve $(D^2 + 4)y = e^x + Sin 2x$ [8+7]

3. (a) If
$$V = \log (x^2 + y^2) + x - 2y$$
 find $\frac{\partial V}{\partial x}, \frac{\partial V}{\partial y}, \frac{\partial^2 V}{\partial x^2}, \frac{\partial^2 V}{\partial y^2}$.
(b) If $U = xe^{xy}$ where $x^2 + y^2 + 2xy = 1$, find $\frac{\partial^2 U}{\partial x^2}$. [8+7]

4. (a) Trace the curve
$$r = 2 + 3 \sin\theta$$
.
(b) Trace the curve $y^2(2a - x) = x^3$. [8+7]

- 5. (a) Find the surface of the solid generated by revolution of the lemniscate $r^2 = a^2 \cos^2 \theta$ about the initial line.
 - (b) Show that the whole length of the curve $x^2(a^2 x^2) = 8a^2y^2$ is $\pi a\sqrt{2}$. [8+7]

6. (a) Show that
$$\int_0^{4a} \int_{\frac{y^2}{4a}}^{\frac{y^2}{2} - \frac{y^2}{x^2 + y^2}} dx dy = 8a^2 \left(\frac{\pi}{2} - \frac{5}{3}\right).$$

- (b) Evaluate $\iint_R y dx dy$ where R is the domain bounded by y-axis, the curve $y = x^2$ and the line x + y = 2 in the first quadrants. [8+7]
- 7. (a) If $V = e^{xyz}(i+j+k)$, find curl V.
 - (b) Find the constants a and b so that the surface $ax^2-byz = (a+2)x$ will be orthogonal to the surface $4x^2y + z^3 = 4$ at the point (1,-1,2) [8+7]
- 8. (a) Show that the area of the ellipse $x^2/a^2 + y^2/b^2 = 1$ is πab
 - (b) If $f = (2x^2 3z)i 2xyj 4xzk$, evaluate (i) $\int_v \nabla \cdot f \, dV$ and (ii) $\int_v \nabla \times f \, dV$ where V is the closed region bounded by x = 0, y = 0, z = 0, 2x + 2y + z = 4. [8+7]

|"|'||||"|"|"|

Code No: R10102/R10

I B.Tech I Semester Supplementary Examinations, Feb/Mar 2014 MATHEMATICS-I

 (Common to Civil Engineering, Electrical & Electronics Engineering, Mechanical Engineering, Electronics & Communication Engineering, Computer Science & Engineering, Chemical Engineering, Electronics & Instrumentation Engineering, Bio-Medical Engineering, Information Technology, Electronics & Computer Engineering, Aeronautical Engineering, Bio-Technology, Automobile Engineering, Mining and Petroliem Technology)

Time: 3 hours

Max Marks: 75

Answer any FIVE Questions All Questions carry equal marks $\star \star \star \star \star$

- 1. (a) Solve $e^y \left(1 + \frac{dy}{dx}\right) = e^x$
 - (b) Show that the family of curves $\frac{x^2}{a^2+\lambda} + \frac{y^2}{a^2+\lambda} = 1$, where ' λ ' is a parameter is self orthogonal. [8+7]
- 2. (a) Solve $(D^2 + 9)y = 2\cos^2 x$. (b) Solve $\frac{d^2y}{dx^2} + 4y = 2e^x Sin^2 x$. [8+7]
- 3. (a) Calculate the approximate value of $\sqrt{10}$ to four decimal places using Taylor's theorem.
 - (b) Find 3 positive numbers whose sum is 600 and whose product is maximum.

[8+7]

- 4. (a) Trace the curve $y = x^2 (x^2 4)$. (b) Trace the curve $r = \cos\theta$. [8+7]
- 5. (a) The figure bounded by a parabola and the tangents at the extremities of its latusrectum revolves about the axis of the parabola, Find the volume of the solid thus generated. [8+7]
 - (b) The segment of the parabola $y^2=4ax$ which is cutoff by the latus rectum revolves about the directrix. Find the volume of rotation of the annular region.
- 6. (a) Evaluate $\int \int (x+y)^2 dx$ dy. over the area bounded by the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$. (b) Transform the following to Cartesian form and hence evaluate $\int_0^{\pi} \int_0^a r^3 \sin\theta dr d\theta$.
- 7. (a) Prove that $\nabla \mathbf{r} = \overline{r}/\mathbf{r}$
 - (b) Find the angle between the surfaces $x^2 + y^2 + z^2 = 9$ and $z=x^2 + y^2-3$ at the point (2,-1,2). [8+7]
- 8. (a) Evaluate $\iint_S (yzi+zxj+xyk) dS$ where S is the surface of the sphere $x^2+y^2+z^2=a^2$ in the first octant.
 - (b) Evaluate $\oint_c (x^2 2xy)dx + (x^2y + 3)dy$ around the boundary of the region defined by $y^2 = 8x$ and x = 2. [8+7]

|"|'||||"|"|"|

Code No: R10102/R10

I B.Tech I Semester Supplementary Examinations, Feb/Mar 2014 MATHEMATICS-I

 (Common to Civil Engineering, Electrical & Electronics Engineering, Mechanical Engineering, Electronics & Communication Engineering, Computer Science & Engineering, Chemical Engineering, Electronics & Instrumentation Engineering, Bio-Medical Engineering, Information Technology, Electronics & Computer Engineering, Aeronautical Engineering, Bio-Technology, Automobile Engineering, Mining and Petroliem Technology)

Time: 3 hours

Max Marks: 75

Answer any FIVE Questions All Questions carry equal marks $\star \star \star \star \star$

- 1. (a) Solve y(Sinx y) dx = Cos x dy
 - (b) If the temperature of air is maintained at $20^{\circ} C$ and the temperature of the body cools from $100^{\circ} C \text{to} 80^{\circ} C$ in 10 minutes, find the temperature of the body after 20 minutes. [8+7]

2. (a) Solve
$$(D^2 - 4D + 13)y = e^{2x}$$

(b) Solve $(D^2 - 3D + 2)y = \cos h x$ [8+7]

3. (a) If
$$r + s + t = x$$
, $s + t = xy$, $t = xyz$, find $\frac{\partial(r,s,t)}{\partial(x,y,z)}$.
(b) Find the extreme points of $f(x, y) = xy + \frac{8}{x} + \frac{8}{y}$. [8+7]

- 4. (a) Trace the curve $y = 5 \cosh\left(\frac{x}{5}\right)$.
 - (b) Trace the curve $y^2 = (4 x)(3 x^2)$.. [8+7]
- 5. (a) Find the length of the arc of the curve $y = \log(\sec x)$ from $x = o \ \tan \frac{\pi}{3}$.
 - (b) Find the perimeter of the loop of the curve $3ay^2 = x(x-a)^2$. [8+7]
- 6. (a) Evaluate $\int \int r dr d\theta$ over the region bounded by the cardioid $r=a(1+\cos\theta)$ and out side the circle r=a.

(b) Change the order of Integration & evaluate
$$\int_0^{4a} \int_{\frac{x^2}{4a}}^{2\sqrt{ax}} dy dx$$
 [8+7]

- 7. (a) Prove that $(\mathbf{F} \times \nabla) \times \overline{r} = -2\mathbf{F}$
 - (b) Determine the constant a so that the vector V = (x+3y)i+(y-z)j+(x+az)k is solenoidal. [8+7]
- 8. Apply Stokes theorem, to evaluate $\oint_c ydx + zdy + xdz$ where C is the curve of intersection of the sphere $x^2 + y^2 + z^2 = a^2$ and x + z = a. [15]

|"|'||||"|"|"|

Set No. 4

I B.Tech I Semester Supplementary Examinations, Feb/Mar 2014 MATHEMATICS-I

 (Common to Civil Engineering, Electrical & Electronics Engineering, Mechanical Engineering, Electronics & Communication Engineering, Computer Science & Engineering, Chemical Engineering, Electronics & Instrumentation Engineering, Bio-Medical Engineering, Information Technology, Electronics & Computer Engineering, Aeronautical Engineering, Bio-Technology, Automobile Engineering, Mining and Petroliem Technology)

Time: 3 hours

Code No: R10102/R10

Max Marks: 75

Answer any FIVE Questions All Questions carry equal marks $\star \star \star \star \star$

- 1. (a) Solve $(x+1)\frac{dy}{dx} y = e^{3x}(x+1)^2$
 - (b) Find the orthogonal trajectory of the family of curves $x^{2/3} + y^{2/3} = a^{2/3}$, where 'a' is a parameter [8+7]

2. (a) Solve
$$(D^3 - 6D^2 + 11D - 6)y = e^{-2x} + e^{-3x}$$

(b) Solve $\frac{d^2y}{dx^2} - 8\frac{dy}{dx} + 15y = 0$ [8+7]

3. (a) If
$$a = \frac{yz}{x}$$
, $b = \frac{xz}{y}$, $c = \frac{xy}{z}$, find $\frac{\partial(x,y,z)}{\partial(a,b,c)}$.
(b) Find the minimum value of $x^2 + y^2 + z^2$, give that $xyz = a^3$ [8+7]

4. (a) Trace the curve
$$\mathbf{r} = \cos 4\theta$$
.
(b) Trace the curve $y^2(1-x) = x^2(1+x)$.. [8+7]

5. Prove that the volume of the solid generated by the revolution about the x - axis of the loop of the curve $x = t^2$, $y = t - \frac{1}{3}t^3$ is $\frac{3\pi}{4}$. [8+7]

6. (a) By changing the order of integration evaluate $\int_0^1 \int_0^{\overline{y_2-x^2}} \frac{x}{\overline{y_2^2+y^2}} dy dx$.

(b) Evaluate $\int_0^a \int_{a-x}^{\overline{a^2-x^2}} y \, dx \, dy$ by using change of order of integration . [8+7]

- 7. (a) If $V = e^{xyz}(i+j+k)$, find curl V.
 - (b) Find the constants a and b so that the surface $ax^2-byz = (a+2)x$ will be orthogonal to the surface $4x^2y + z^3 = 4$ at the point (1,-1,2) [8+7]
- 8. (a) Use divergence theorem to evaluate $\iint_S (x^3i + y^3j + z^3k) Nds$, and S is the surface of the sphere $x^2+y^2+z^2=r^2$.

(b) Using Green's theorem, Find the area bounded by the hypocycloid $x^{2/3}+y^{2/3}=a^{2/3}$, a>0. Given that the parametric equations are $x = a \cos^3\theta$, $y = a \sin^3\theta$. [8+7]

|"|'||||"|"||